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1 Abstract

Honeybee swarms have been the subject of a multitude of research questions in
the past, and though much has been learned about them, research has been lim-
ited by an inability to see inside the swarms. Though researchers have developed
ways of estimating the density of certain areas within swarms, there is currently
no way of knowing exactly where each individual bee is. This research seeks to
develop a method of using a U-Net to segment bees in three-dimensional X-ray
images of swarms. This network has proven to be capable of identifying individ-
ual bees and could help dramatically increase our understanding of honeybee
swarms by allowing research to be done with knowledge of the exact location of
each bee inside of these previously opaque super-organisms.

2 Introduction

Honeybee swarms are super-organisms composed of an aggregation of a large
number of individual honeybees holding onto each other. They are temporarily
formed when a group of bees, including a queen, leave an established hive to
create a new hive and are found most often hanging from tree branches. Here,
they face various changes in their external environment including temperature
fluctuations, rain, wind, and shaking of the branch they may be clinging to.
Previous research has found that the swarm as a whole efficiently adapts to
these changes [2, 4, 5], but less is understood about the behavior of individual
bees that allow for these changes to occur. There have been attempts in the
past to gain more insight into the inner workings of the swarm by, for example,
characterizing the spatially averaged mass of swarms [7], but the location of
individual bees has never been characterized. Compared to dense aggregations

01Department of Computer Science, Skidmore College, email: nvanhoorn@skidmore.edu,
2BioFrontiers Institute, University of Colorado, Boulder, USA, 80303; email:
Danielle.Chase@colorado.edu, 3BioFrontiers Institute, Department of Computer Science,
Department of Physics, Department of Applied Math, Department of Ecology and Evolution-
ary Biology, University of Colorado, Boulder, USA, 80303 email: Orit.Peleg@colorado.edu,
4Santa Fe Institute, Santa Fe, USA, 87501



of multicellular organisms, aggregations of single-celled organisms have been
studied with single-cell resolution, due to specialized techniques in molecular
biology and advanced microscopy. Deep learning methods have also proved to
be capable of the segmentation of individual cells [1, 3, 6], allowing for a better
understanding of how the individual cells make up these aggregations. The goal
of this research is to explore the possibility of using the U-Net architecture found
to be effective in image segmentation at the unicellular level for the segmentation
of X-ray images of bee swarms. By doing so, we hope to better understand how
the behavior of individual bees contributes to the overall structure of the swarm
and allows for its adaptations in response to environmental changes.

3 Methods

To train a neural network capable of identifying individual bees in a swarm,
training data is vital. First, swarms of bees were made and captured in three
dimensions using X-ray Computed Tomography; this process is explained in-
depth in ”Collective Mechanical Adaptation of Honeybee Swarms” [4]. It is
important to note that the data is obtained over a time span of roughly one
minute; during this time the bees being captured can move, resulting in blurry
images and large amounts of "noise” (Fig. 1). These noisy images are harder
to segment for humans and neural networks alike.

Once a three-dimensional X-ray image of a swarm is obtained, it can be
labeled to use for training data (Fig. 2). To label these images, the X-ray files
were uploaded to 8D Slicer, and individual bees were identified and colored in
by hand as segments. As can be seen in figure 1, bees in these images show up as
three individual components: the head, thorax, and abdomen. The connection
between these three segments can be extremely narrow (at times, not even
visible) and are only seen in certain slices. When labeling the individual bees,
it was ensured that all three segments of the bees were connected in at least
two slices, even if this meant artificially adding a connection where one was
not visible. Additionally, the bees are often packed tightly together, also shown
in figure 1, and, when labeling them, it can be challenging to differentiate the
boundaries of the bees, especially in images with more noise. However, it was
also ensured that in the labels no bees were touching, even if that meant making
the labeled bees one voxel smaller all around than they appeared to be. These
measures were taken with the hopes that the neural networks would 1) learn to
connect all three segments of a bee and not rely solely on the grayscale value of
the voxel to determine the presence of a bee and 2) learn not to connect bees
together. Labeling was completed for one cropped cube measuring 46x46x46
voxels (Fig. 2) and one small swarm (Fig. 3). The cropped cube was completed
first and used for the first round of neural network training and development.
Though this cube was small, it contained around 50 individual bees and did
not have much noise. The small swarm took longer to complete, but once
finished was used for training the second round of neural networks. This swarm
contained 425 bees, though many were extremely blurry and hard to identify.



Figure 1: Captured X-ray data from a small swarm of bees. In X-ray images, bees
most often show up as three separate segments; an example of a whole bee is circled
in yellow where the three segments can be seen. In a single swarm, areas are present
with a) well-defined bees and b) high levels of noise, most likely caused by movement
of the bees and resulting in blurred bodies. Additionally, bees are often packed tightly
together, as shown on the bottom left of image a.

The neural network used for this project has undergone many modifications
and will continue to be developed with the hope of improving its performance.
Currently, over 40 different networks have been trained, but they all share some
basic features: they have a U-Net structure, they take a 32x32x32 voxel X-ray
image as an input, and they output a probability map of bee locations, which
can then be thresholded to find binary information about the presence of a
bee in each voxel (Fig. 4). The first 14 networks, trained on just the labeled
cube, provided a benchmark for model performance. The models were primarily
evaluated by comparing the binary cross entropy (BCE) between the network
output and the provided labels (referred to as loss), comparing residuals, and by
visually observing how the model’s predictions compared to the target labels.
The BCE loss function, as provided by PyTorch, can be described as

l(x7y) = {ll> ‘-‘JN}TJn = _wn[yn : Ingn + (1 - yn) : 10g(1 - xn)]y

where N is the batch size. This loss function was chosen due to the nature of the
data, with binary labels being compared to a probability falling between 0 and
1. Residuals of the network were plotted by subtracting the target labels from
the neural network output to compare which voxels were different, an example
of which can be seen in figure 6.

Once the small swarm was completely labeled, networks could then be
trained with this larger amount of training data. Not only is the small swarm
over 60 times the size of the previously used cube, but it also contains a variety
of bees, exposing the network to more situations, and consequently improving
it’s ability to identify previously unseen bees. While this network is not final-
ized, various ideas have been implemented and the training process seems to
have improved over time (Fig. 5). Tested methods of improving the neural
network include, but are not limited to, data augmentation, changing the depth
of the network, changing the number of channels in each layer, changing the
learning rate, adding batch normalization, implementing early stopping with
varying patience levels, and adding dropout.



Figure 2: a) A single slice and b) a full three-dimensional cube comparing the original
X-ray data to the individually labeled bees. The cube shown in b was the training data
for the first round of neural networks developed.

Figure 3: The fully labeled small swarm used for training, visualized in 8D Slicer from
the base (left), the tip (middle), and the side (right). This small swarm contains 425
bees and is approximately ten times smaller than the regular-sized swarms that the
network will ideally work on.

Once a neural network has been trained, it can be applied to data that
exceeds the 32x32x32 voxel input size in patches. This algorithm takes a certain
stride (16 was most often used) and a certain patch size (32 to match the model
input) and ”"walks” along the whole input data, applying the model in patches.
Since the data is being cut into smaller, overlapping cubes, it can be safely
assumed that, in general, the inside of the patch will contain whole bees while
the outskirts will contain bees that have been cropped. Therefore, it is more
likely that the network will be able to correctly identify bees in the center of
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Figure 4: The general architecture of the neural networks. The X-ray input is fed
through an encoder-decoder U-Net, which outputs a probability map. This can then
be converted into a binary map using a specified threshold.
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Figure 5: a) The starting networks were trained over 1,000 epochs with all data being
dedicated to training. b) To help prevent overfitting, 20% of available training data
was set aside for validation data to implement early stopping in later models. c) To
further prevent overfitting, dropout was added. d) The learning rate of the models were
fine-tuned to prevent a sharp drop-off and quick plateau.

each patch than on the edges, so each patch is weighted with a Gaussian curve,
applied in all three dimensions, so the voxels in the center of the patch are
weighted more heavily than those along the perimeter. Once all of the patches
have been evaluated and normalized, they are combined, and the whole image
has been evaluated. Due to the overlapping nature of the patches and the
Gaussian normalization, it is believed that the transitions between patches are

theoretically seamless.



Once the network has outputted a probability map of where bees are likely
to be, a binary map can be obtained after thresholding. Potential threshold
values range from 0.1 and 0.9 and dictate how much of the probability map
is kept; a threshold of 0.1 will result in dark gray voxels being identified as
a bee, while a higher threshold will ensure only very light voxels are kept as
bees in the binary map. Varying thresholds dramatically impact the resulting
binary map as well as the connected components identified (Fig. 6). Ideally, a
threshold would be found which results in each bee being a single component;
too small of a threshold will result in different bees being combined while a high
threshold might separate one bee into multiple different parts. After finding an

Input Labels Probability Map

Binary
Maps

Threshold 0.1 Threshold 0.2 Threshold 0.3 Threshold 0.4 Threshold 0.5 Threshold > 0.6

Figure 6: Given a network’s output probability map, different thresholds can result
in vastly different binary maps and connected components. As seen with a threshold
of 0.1, a low threshold can result in separate bees being combined into one connected
component (shown in purple). Comparatively, with higher thresholds, a single bee
can be divided into separate components, as seen on the right with thresholds 0.3 and
higher. Residual plots are also created to compare the network’s output to the original
labels to help evaluate network performance. Purple pixels indicate areas where bees
were found in the labels but not in the output binary map, yellow pixels indicate the
opposite, and the blue area is where both the labels and binary map were the same.

Given thresholds 0.2 and higher, this network tends to miss voxels around the perimeter
of the bees and labels less of the bees as the threshold increases.

Connected
Components
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appropriate threshold, the location of each bee should theoretically be known,
though the network is bound to make some errors. At this point, a plethora of
analysis options become possible to better understand the inner working of bee
swarms.



4 Results

Out of the 14 preliminary networks trained on just the small cube, the best
performing one, given the previously specified criteria, (network 7) had a loss of
0.148 and, when applied to a regular-sized swarm of bees, appeared to segment
the majority of the swarm well (Fig. 7). The outer edges of the swarm were,
unfortunately, combined into mainly one large component, though this is un-
surprising. Images obtained through X-ray Computed Tomography are known
to have a higher resolution around the center of rotation, so the bees along the
perimeter of the swarm tend to become elongated and blur together slightly
due to the nature of how the data is acquired. Additionally, this area tends to
be brighter, which the neural network most likely interprets as the presence of
more bees. These factors, present in the larger swarm but not in the training
data, make it understandable why the network would perform worse in this area.
Additionally, the swarm these networks were tested on was a different temper-
ature compared to the training data, so the bees might be orienting themselves
in unseen ways. But while this network mostly performed well, it is important
to note that the loss might be deceptively low; this network was trained using
27 unique 32x32x32 voxel crops of the labeled 46x46x46 voxel cube and tested
on an unseen crop of the same cube. This was the only way to quantitatively
measure the loss when only one cube of labeled training data was available for
use, but due to the similarity of the training and testing data, it is likely that
this model is overfit to this data and would be less capable of generalizing to
unseen conditions, such as areas of high noise or bees in varying orientations.
This network had the architecture shown in figure 4 but, compared to other
networks, had decreased channel sizes.

At the moment of writing, the network trained on the small swarm with
the lowest loss (0.246 when tested on the original cube), network 15, appears
to perform worse when segmenting a larger swarm, compared to the network
described above (Fig. 7). This may be because, as previously mentioned, the
labeled small swarm contained areas that appeared to be mostly noise where no
distinct bees could be found (Fig. 1). Despite the lack of distinction, individual
bees were still identified within the noise and were labeled to try to train the
network to be able to pick up on less recognizable bees. Therefore, it is possible
that, when given areas of noise, this network is more likely to try to identify bees
within the noise when compared to its predecessor. Therefore, when presented
with a swarm that has large levels of noise, especially around the perimeters,
this network may become overzealous and identify too many bees, creating the
one large connected component which can be seen in figure 7. This network’s
architecture had regular channel sizes, batch normalization, and early stopping
with low patience.

The 34th neural network trained has the second lowest loss out of all net-
works trained on the small swarm. But, despite its marginally higher loss of
0.247, this network appears to be the best at segmenting a regularly sized swarm
(Fig. 7). Unlike the other ”"best” networks identified, this swarm’s segmentation
does not include any visibly large connected components along the perimeter of



the swarm; the majority of bees seem to be separate, but well-formed. There-
fore, this network is, out of all of them, the one that most likely provides the
best estimation of where each bee in the swarm is. Though improvements can
likely still be made, this network’s output could already provide interesting in-
sights into the construction of honeybee swarms. This network’s architecture
had regular channel sizes, batch normalization, dropout, a significantly smaller
learning rate, and early stopping with high patience.

Figure 7: Three-dimensional visualizations of the neural network outputs for a regular-
sized swarm with all components smaller than 100 voxels removed. The left shows the
base of the swarm with the cage housing the queen bee in the center, the middle is a
view pointing up at the tip of the hanging swarm, and the right shows the swarm from
more of a side view. a) Network 7 segments the majority of the swarm well, though
along the perimeter multiple large components can be seen, especially the large purple
region. b) Network 15 also performs worse along the perimeter and base of the swarm,
emphasized by the large dark red region. c) Network 34 segments all areas of the swarm
well as, unlike the other two networks, there are no large regions of connected bees.

In general, the modifications that most significantly improved the perfor-
mance of these networks were: adding batch normalization and dropout to each
convolutional layer, setting aside validation data and implementing early stop-
ping, and fine-tuning the learning rate. Increased training data is also always
beneficial (despite the impressive performance of the network trained on less
data), and though, when tested, it did not help these networks, relevant data
augmentation should also theoretically improve performance. Despite the over-
all improved performance of the networks, they all still have their faults; the



bees they are trying to segment are irregularly shaped making them hard to
learn to identify. Additionally, the disoriented data around the perimeters of
the larger swarms caused by X-ray Computed Tomography was unseen in train-
ing. Hopefully, going forward, the addition of more training data, particularly
focused on the outskirts of a large swarm, will help the networks improve more.

5 Future Work

Though the 34th network appears to segment bees well, more ways of improve-
ment can be explored. Along with various minor adjustments that can be ex-
perimented with, it would be interesting to look into using a Mask R-CNN to
aid with segmentation, as has been found effective with bacteria segmentation
[3]. It would also be interesting to look into the possibility of using an average
of outputs from various networks to see if their combined outputs would prove
to be better than any one network could produce.

Creating more training data would also likely aid in the performance of these
networks. Currently, training a small swarm of bees takes well over 53 hours
(assuming 400 bees are in the swarm, labeling each bee takes 8 minutes, the
identification of bees is instantaneous, and no quality control is performed),
which is quite a time-consuming task. However, training data is vital, so it
would be interesting to look into ways to speed up this process. One idea is
that, given the current strong performance of some neural networks, the output
of these networks can be used as a starting point for labeling. Therefore, instead
of starting from scratch and labeling over 400 individual bees, the data can first
be fed to the neural network, and the resulting output can be loaded as labels
in 3D Slicer, and then small edits would just have to be made to ensure quality.
Theoretically, this could save large amounts of time and dramatically speed up
the rate at which the network improves with more training data. Additionally,
since many networks have proven themselves to be good at segmenting the
centers of swarms but not the perimeters, it would be interesting to see if training
data acquired from these outer edges would help with this performance issue.
Also, training data from swarms at different temperatures would likely help the
networks generalize to swarms in varying conditions.

Lastly, now that there is a way to locate individual honeybees in swarms,
even if it is not perfect, this information can be used to help better understand
how individual bees contribute to changes in the swarm. It would be interest-
ing to segment swarms at various temperatures, for instance, to compare their
makeup. Once the location of each individual bee is obtained, their centers of
mass can be found which can be used for various interesting analysis methods as
well as informing the distribution of bees throughout the swarm. In the future,
maybe this network could even be applied to three-dimensional video footage
of the swarms, which would help inform how bees travel throughout the swarm
or move to change the swarm’s structure. Overall, this segmentation capability
could be applied to a variety of research questions in the future and will likely
increase our fundamental understanding of honeybee swarms.
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